M-math 1st year Mid Semester Exam Subject: Advanced Probability

Time: 3 hours Date: 10-9-14. Max.Marks 50.

- 1. Let X and Y be real valued r.v.'s defined on a probability space (Ω, \mathcal{F}, P) . Determine (explicitly) a regular conditional distribution of X given Y in each of the following cases .
- a) X and Y have joint density f(x, y).
- b) $X:\Omega \to \{0,1\}^n$ and $Y:\Omega \to [0,1]$ having the joint distribution

$$P\{X = x, Y \in B\} = \int_{B} y^{k} (1 - y)^{n-k} dy$$

where $x=(x_1,\cdots,x_n)\in\{0,1\}^n, k:=$ Cardinality of $\{i: x_i=1\}$ and $B\subset[0,1]$, a Borel set. (5+5)

- 2. a)Let $\{Y_n; n \geq 1\}$ be an independent sequence with $EY_1^2 < \infty$ and $\mathcal{F}_n := \sigma\{Y_i: 1 \leq i \leq n\}, n \geq 1$ and $\mathcal{F}_0 = \{\phi, \Omega\}$. In each of the following cases show that $\{X_n, \mathcal{F}_n, n \geq 0\}$, is a square integrable martingale and compute the predictable increasing process $\{\langle X \rangle_n, n \geq 0\}$ such that $\{X_n^2 \langle X \rangle_n, n \geq 0\}$ is an (\mathcal{F}_n) martingale.
- i) $X_n = Y_1 + \cdots + Y_n, n \ge 1$ and $X_0 = 0 = EY_i, i \ge 1$.
- ii) $X_n = \prod_{i=1}^n Y_i, n \ge 1$ and $X_0 = 1 = EY_i, i \ge 1$.
- b) Show that if $\{X_n, \mathcal{F}_n, n \geq 0\}$ is a predictable martingale with $X_0 = 0$ a.s. then $X_n = 0$ a.s. for all $n \geq 0$. (5+5)
- 3. Let $\{\mu_n\}$ be a sequence of probability measures on \mathbb{R} . In each of the following cases, determine if $\{\mu_n\}$ converges weakly. Prove your result.
- a) $\mu_n := \frac{1}{n} \sum_{i=1}^n \delta_{\frac{i}{n}}$, where δ_x is the Dirac measure at x.
- b) $\mu_n := \lambda|_{[-n,n]}$, the restriction of the Lebesgue measure λ to the interval [-n,n].
- c) $\mu_n := P_{\frac{X_n}{n}}$, the distribution of the r.v $\frac{X_n}{n}$ where X_n has the Geometric distribution with parameter $\frac{1}{n^2}$. (4+3+3)
- 4. Let μ_n , μ be probability measures on \mathbb{R}^k and let $\hat{\mu_n}$, $\hat{\mu}$ denote their characteristic functions.

- a) Show that $\hat{\mu}$ is uniformly continuous on \mathbb{R}^k .
- b) Suppose that $\hat{\mu_n}(t) \to \hat{\mu}(t)$ for every $t \in \mathbb{R}^k$. Show that the family $\{\mu_n\}$ is tight. (4+6)
- 5. Let F,G be (probability) distribution functions on $\mathbb R$ and define

$$d(F,G) := \{\epsilon: G(x-\epsilon) - \epsilon \leq F(x) \leq G(x+\epsilon) + \epsilon, \forall x \in \mathbb{R}.\}$$

Show that

- a) d(.,.) is a metric and
- b) $d(F_n, F) \to 0$ iff $F_n(x) \to F(x)$ for all continuity points x of F. (7+8)